A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jia Huang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
نویسنده
چکیده
We study combinatorial aspects of the representation theory of the 0-Hecke algebra Hn(0), a deformation of the group algebra of the symmetric group Sn. We study the action of Hn(0) on the polynomial ring in n variables. We show that the coinvariant algebra of this action naturally carries the regular representation of Hn(0), giving an analogue of the well-known result for the symmetric group by Chevalley-Shephard-Todd. By investigating the action of Hn(0) on coinvariants and flag varieties, we interpret the generating functions counting the permutations with fixed inverse descent set by their inversion number and major index. We also study the Hn(0)-action on the cohomology rings of the Springer fibers, and similarly interpret the (noncommutative) Hall-Littlewood symmetric functions indexed by hook shapes. We generalize the last result from hooks to all compositions by defining an Hn(0)action on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their (q, t)-analogues introduced by Bergeron and Zabrocki, and to a more general family of noncommutative symmetric functions having parameters associated with paths in binary trees introduced recently by Lascoux, Novelli, and Thibon. We also obtain multivariate quasisymmetric function identities from this Hn(0)action, which specialize to results of Garsia and Gessel on generating functions of multivariate distributions of permutation statistics. More generally, for any finite Coxeter group W , we define an action of its Hecke algebra HW (q) on the Stanley-Reisner ring of its Coxeter complex. We find the invariant algebra of this action, and show that the coinvariant algebra of this action is isomorphic to the regular representation of HW (q) if q is generic. When q = 0 we find a decomposition for the coinvariant algebra as a multigraded HW (0)-module.
منابع مشابه
Algorithm and VLSI Architecture for Polar Codes Decoder A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY BO YUAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
متن کامل
Identification of Compounds inhibiting a Leishmania RNA Editing Reaction A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SHUANG LIANG IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
متن کامل
Regulation of insulin signaling in Drosophila melanogaster A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jung Kim IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser
........................................................................................................................................... i Table of
متن کاملAdvanced Placement Techniques for Future VLSI Circuits A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Brent Goplen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
متن کامل